Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.007
Filtrar
1.
Nature ; 622(7983): 611-618, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37699522

RESUMO

Clostridioides difficile infection (CDI) is a major cause of healthcare-associated gastrointestinal infections1,2. The exaggerated colonic inflammation caused by C. difficile toxins such as toxin B (TcdB) damages tissues and promotes C. difficile colonization3-6, but how TcdB causes inflammation is unclear. Here we report that TcdB induces neurogenic inflammation by targeting gut-innervating afferent neurons and pericytes through receptors, including the Frizzled receptors (FZD1, FZD2 and FZD7) in neurons and chondroitin sulfate proteoglycan 4 (CSPG4) in pericytes. TcdB stimulates the secretion of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) from neurons and pro-inflammatory cytokines from pericytes. Targeted delivery of the TcdB enzymatic domain, through fusion with a detoxified diphtheria toxin, into peptidergic sensory neurons that express exogeneous diphtheria toxin receptor (an approach we term toxogenetics) is sufficient to induce neurogenic inflammation and recapitulates major colonic histopathology associated with CDI. Conversely, mice lacking SP, CGRP or the SP receptor (neurokinin 1 receptor) show reduced pathology in both models of caecal TcdB injection and CDI. Blocking SP or CGRP signalling reduces tissue damage and C. difficile burden in mice infected with a standard C. difficile strain or with hypervirulent strains expressing the TcdB2 variant. Thus, targeting neurogenic inflammation provides a host-oriented therapeutic approach for treating CDI.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Inflamação Neurogênica , Neurônios Aferentes , Pericitos , Animais , Camundongos , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Inflamação Neurogênica/induzido quimicamente , Inflamação Neurogênica/microbiologia , Inflamação Neurogênica/patologia , Pericitos/efeitos dos fármacos , Pericitos/microbiologia , Pericitos/patologia , Receptores da Neurocinina-1/metabolismo , Substância P/antagonistas & inibidores , Substância P/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/microbiologia , Neurônios Aferentes/patologia , Mediadores da Inflamação/metabolismo , Ceco/efeitos dos fármacos , Ceco/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216445

RESUMO

The role of TRPA1 receptor channels in meningeal nociception underlying the generation of headaches is still unclear. Activating as well as inhibitory effects of TRPA1 agonists have been reported in animal models of headache. The aim of the present study was to clarify the effect of the TRPA1 agonist nitroxyl (HNO) delivered by Angeli's salt in two rodent models of meningeal nociception. Single fibre recordings were performed using half-skull preparations of mice (C57BL/6) in vitro. Angeli's salt solution (AS, 300 µM) caused short-lasting vigorous increases in neuronal activity of primary meningeal afferents, followed by deactivation and desensitisation. These effects were similar in TRPA1 knockout and even more pronounced in TRPA1/TRPV1 double-knockout mice in comparison to wild-type mice. The activity of spinal trigeminal neurons with afferent input from the dura mater was recorded in vivo in anesthetised rats. AS (300 µM) or the TRPA1 agonist acrolein (100 and 300 µM) was applied to the exposed dura mater. AS caused no significant changes in spontaneous activity, while the mechanically evoked activity was reduced after acrolein application. These results do not confirm the assumption that activation of trigeminal TRPA1 receptor channels triggers the generation of headaches or contributes to its aggravation. Instead, there is evidence that TRPA1 activation may have an inhibitory function in the nociceptive trigeminal system.


Assuntos
Dura-Máter/efeitos dos fármacos , Cefaleia/tratamento farmacológico , Neurônios Aferentes/efeitos dos fármacos , Óxidos de Nitrogênio/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dura-Máter/metabolismo , Feminino , Cefaleia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios Aferentes/metabolismo , Nociceptividade/efeitos dos fármacos , Ratos , Ratos Wistar , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo
3.
Nat Commun ; 12(1): 5812, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608164

RESUMO

The advantage of locally applied anesthetics is that they are not associated with the many adverse effects, including addiction liability, of systemically administered analgesics. This therapeutic approach has two inherent pitfalls: specificity and a short duration of action. Here, we identified nociceptor endocytosis as a promising target for local, specific, and long-lasting treatment of inflammatory pain. We observed preferential expression of AP2α2, an α-subunit isoform of the AP2 complex, within CGRP+/IB4- nociceptors in rodents and in CGRP+ dorsal root ganglion neurons from a human donor. We utilized genetic and pharmacological approaches to inhibit nociceptor endocytosis demonstrating its role in the development and maintenance of acute and chronic inflammatory pain. One-time injection of an AP2 inhibitor peptide significantly reduced acute and chronic pain-like behaviors and provided prolonged analgesia. We evidenced sexually dimorphic recovery responses to this pharmacological approach highlighting the importance of sex differences in pain development and response to analgesics.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dor Crônica/tratamento farmacológico , Endocitose/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Complexo 2 de Proteínas Adaptadoras/antagonistas & inibidores , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/antagonistas & inibidores , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Epiderme/inervação , Feminino , Gânglios Espinais/metabolismo , Humanos , Inflamação , Masculino , Camundongos , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Nociceptores/metabolismo , Nociceptores/fisiologia , Peptídeos/administração & dosagem , Peptídeos/metabolismo , Peptídeos/farmacologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
4.
Brain Res Bull ; 177: 305-315, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687776

RESUMO

Dynamic regulation of G-protein-coupled receptor (GPCR) kinase 2 (GRK2) expression restores cellular function by protecting from overstimulation via GPCR and non-GPCR signaling. In the primary afferent neurons, GRK2 negatively regulates nociceptive tone. The present study tested the hypothesis that induction of GRK2 in the primary afferent neurons contributes to the resolution of acute pain after tissue injury. GRK2 expression in the dorsal root ganglion (DRG) was analyzed at 1 and 7 days after the incision. Intraperitoneal administration of a GRK2 inhibitor was performed 7 days post-incision in male Sprague-Dawley rats who underwent plantar incisions to analyze the pain-related behavioral effect of the GRK2 inhibitor. Separately, GRK2 expression was analyzed after injecting insulin-like growth factor 1 (IGF1) into the rat hind paw. In addition, an IGF1 receptor (IGF1R) inhibitor was administered in the plantar incision rats to determine its effect on the incision-induced hyperalgesia and GRK2 expression. Plantar incision induced an increase in GRK2 in the DRG at 7 days, but not at 1 day post-incision. Acute hyperalgesia after the plantar incision disappeared by 7 days post-incision. Intraperitoneal injection of the GRK2 inhibitor at this time reinstated mechanical hyperalgesia, although the GRK2 inhibitor did not produce hyperalgesia in naive rats. After the incision, IGF1 expression increased in the paw, but not in the DRG. Intraplantar injection of IGF1 increased GRK2 expression in the ipsilateral DRG. IGF1R inhibitor administration prevented both the induction of GRK2 and resolution of hyperalgesia after the plantar incision. These findings demonstrate that induction of GRK2 expression driven by tissue IGF1 has potent analgesic effects and produces resolution of hyperalgesia after tissue injury. Dysregulation of IGF1-GRK2 signaling could potentially lead to failure of the spontaneous resolution of acute pain and, hence, development of chronic pain after surgery.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G , Hiperalgesia , Fator de Crescimento Insulin-Like I , Neurônios Aferentes , Animais , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/enzimologia , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/enzimologia , Neurônios Aferentes/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R687-R698, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34549627

RESUMO

Recently it was documented that fatiguing, high-intensity exercise resulted in a significant attenuation in maximal skeletal muscle mitochondrial respiratory capacity, potentially due to the intramuscular metabolic perturbation elicited by such intense exercise. With the utilization of intrathecal fentanyl to attenuate afferent feedback from group III/IV muscle afferents, permitting increased muscle activation and greater intramuscular metabolic disturbance, this study aimed to better elucidate the role of metabolic perturbation on mitochondrial respiratory function. Eight young, healthy males performed high-intensity cycle exercise in control (CTRL) and fentanyl-treated (FENT) conditions. Liquid chromatography-mass spectrometry and high-resolution respirometry were used to assess metabolites and mitochondrial respiratory function, respectively, pre- and postexercise in muscle biopsies from the vastus lateralis. Compared with CTRL, FENT yielded a significantly greater exercise-induced metabolic perturbation (PCr: -67% vs. -82%, Pi: 353% vs. 534%, pH: -0.22 vs. -0.31, lactate: 820% vs. 1,160%). Somewhat surprisingly, despite this greater metabolic perturbation in FENT compared with CTRL, with the only exception of respiratory control ratio (RCR) (-3% and -36%) for which the impact of FENT was significantly greater, the degree of attenuated mitochondrial respiratory capacity postexercise was not different between CTRL and FENT, respectively, as assessed by maximal respiratory flux through complex I (-15% and -33%), complex II (-36% and -23%), complex I + II (-31% and -20%), and state 3CI+CII control ratio (-24% and -39%). Although a basement effect cannot be ruled out, this failure of an augmented metabolic perturbation to extensively further attenuate mitochondrial function questions the direct role of high-intensity exercise-induced metabolite accumulation in this postexercise response.


Assuntos
Metabolismo Energético , Exercício Físico , Mitocôndrias Musculares/metabolismo , Contração Muscular , Músculo Quadríceps/metabolismo , Adulto , Analgésicos Opioides/administração & dosagem , Ciclismo , Respiração Celular , Fentanila/administração & dosagem , Voluntários Saudáveis , Humanos , Injeções Espinhais , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Músculo Quadríceps/inervação , Distribuição Aleatória , Adulto Jovem
6.
Eur J Pharmacol ; 910: 174449, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34454925

RESUMO

Propranolol, a representative adrenergic ß-receptor antagonist, is widely used to prevent migraine attacks. Although propranolol is well known to inhibit tetrodotoxin-resistant (TTX-R) Na+ channels in cardiac myocytes, it is unclear whether the drug modulates these channels expressed in dural afferent neurons. In this study, we examined the effects of propranolol on TTX-R Na+ channels in medium-sized dural afferent neurons identified by the fluorescent dye DiI. The TTX-R Na+ currents (INa) were recorded from acutely isolated DiI-positive neurons using a whole-cell patch clamp technique under voltage-clamp conditions. Propranolol inhibited the noninactivating steady-state component more potently than the peak component of transient TTX-R INa. Propranolol also potently inhibited the slow voltage ramp-induced TTX-R INa in a concentration-dependent manner, suggesting that it preferentially inhibited the noninactivating or persistent INa in DiI-positive neurons. Propranolol had little effect on voltage dependence, but it increased the extent of the use-dependent inhibition of TTX-R Na+ channels. Propranolol also accelerated the onset of inactivation and retarded recovery from inactivation in these channels. Under current-clamp conditions, propranolol decreased the number of action potentials elicited by depolarizing current stimuli. In conclusion, the propranolol-mediated preferential inhibition of persistent INa and modulation of the inactivation kinetics of TTX-R Na+ channels might represent additional mechanisms for migraine prophylaxis.


Assuntos
Neurônios Aferentes/metabolismo , Neurônios/efeitos dos fármacos , Propranolol/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia , Animais , Condutividade Elétrica , Corantes Fluorescentes , Ativação do Canal Iônico , Masculino , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Canais de Sódio/efeitos dos fármacos
7.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346492

RESUMO

Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.


Assuntos
Androgênios/sangue , Neurônios/patologia , Síndrome do Ovário Policístico/patologia , Efeitos Tardios da Exposição Pré-Natal , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Androgênios/farmacologia , Animais , Modelos Animais de Doenças , Dinorfinas/metabolismo , Feminino , Kisspeptinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurocinina B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/metabolismo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Síndrome do Ovário Policístico/psicologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/psicologia
8.
Physiol Rep ; 9(16): e14975, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34405579

RESUMO

Voltage-gated ion channels play a key role in the action potential (AP) initiation and its propagation in sensory neurons. Modulation of their activity during chronic inflammation creates a persistent pain state. In this study, we sought to determine how peripheral inflammation caused by complete Freund's adjuvant (CFA) alters the fast sodium (INa ), L-type calcium (ICaL ), and potassium (IK ) currents in primary afferent fibers to increase nociception. In our model, intraplantar administration of CFA induced mechanical allodynia and thermal hyperalgesia at day 14 post-injection. Using whole-cell patch-clamp recording in dissociated small (C), medium (Aδ), and large-sized (Aß) rat dorsal root ganglion (DRG) neurons, we found that CFA prolonged the AP duration and increased the amplitude of the tetrodotoxin-resistant (TTX-r) INa in Aß fibers. In addition, CFA accelerated the recovery of INa from inactivation in C and Aδ nociceptive fibers but enhanced the late sodium current (INaL ) only in Aδ and Aß neurons. Inflammation similarly reduced the amplitude of ICaL in each neuronal cell type. Fourteen days after injection, CFA reduced both components of IK (IKdr and IA ) in Aδ fibers. We also found that IA was significantly larger in C and Aδ neurons in normal conditions and during chronic inflammation. Our data, therefore, suggest that targeting the transient potassium current IA represents an efficient way to shift the balance toward antinociception during inflammation, since its activation will selectively decrease the AP duration in nociceptive fibers. Altogether, our data indicate that complex interactions between IK , INa , and ICaL reduce pain threshold by concomitantly enhancing the activity of nociceptive neurons and reducing the inhibitory action of Aß fibers during chronic inflammation.


Assuntos
Potenciais de Ação , Neurônios Aferentes/metabolismo , Dor Nociceptiva/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Nociceptividade , Dor Nociceptiva/fisiopatologia , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia
9.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203300

RESUMO

Pain symptoms in temporomandibular disorders (TMD) predominantly affect reproductive women, suggesting that estrogen regulates pain perception. However, how estrogen contributes to chronic TMD pain remains largely unclear. In the present study, we performed behavioral tests, electrophysiology, Western blot and immunofluorescence to investigate the role and underlying mechanisms of estrogen in dental experimental occlusal interference (EOI)-induced chronic masseter mechanical hyperalgesia in rats. We found that long-term 17ß-estradiol (E2) replacement exacerbated EOI-induced masseter hyperalgesia in a dose-dependent manner in ovariectomized (OVX) rats. Whole-cell patch-clamp recordings demonstrated that E2 (100 nM) treatment enhanced the excitability of isolated trigeminal ganglion (TG) neurons in OVX and OVX EOI rats, and EOI increased the functional expression of transient receptor potential vanilloid-1 (TRPV1). In addition, E2 replacement upregulated the protein expression of TRPV1 in EOI-treated OVX rats. Importantly, intraganglionic administration of the TRPV1 antagonist AMG-9810 strongly attenuated the facilitatory effect of E2 on EOI-induced masseter mechanical sensitivity. These results demonstrate that E2 exacerbated EOI-induced chronic masseter mechanical hyperalgesia by increasing TG neuronal excitability and TRPV1 function. Our study helps to elucidate the E2 actions in chronic myogenic TMD pain and may provide new therapeutic targets for relieving estrogen-sensitive pain.


Assuntos
Hiperalgesia/tratamento farmacológico , Neurônios Aferentes/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Gânglio Trigeminal/metabolismo , Acrilamidas/farmacologia , Animais , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Estradiol/genética , Estradiol/metabolismo , Feminino , Imunofluorescência , Hiperalgesia/metabolismo , Ovariectomia , Ratos , Ratos Sprague-Dawley , Gânglio Trigeminal/efeitos dos fármacos
10.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206060

RESUMO

Acupuncture modulates the mesolimbic dopamine (DA) system; an area implicated in drug abuse. However, the mechanism by which peripheral sensory afferents, during acupuncture stimulation, modulate this system needs further investigation. The lateral hypothalamus (LH) has been implicated in reward processing and addictive behaviors. To investigate the role of the LH in mediating acupuncture effects, we evaluated the role of LH and spinohypothalamic neurons on cocaine-induced psychomotor activity and NAc DA release. Systemic injection of cocaine increased locomotor activity and 50 kHz ultrasonic vocalizations (USVs), which were attenuated by mechanical stimulation of needles inserted into HT7 but neither ST36 nor LI5. The acupuncture effects were blocked by chemical lesions of the LH or mimicked by activation of LH neurons. Single-unit extracellular recordings showed excitation of LH and spinohypothalamic neurons following acupuncture. Our results suggest that acupuncture recruits the LH to suppress the mesolimbic DA system and psychomotor responses following cocaine injection.


Assuntos
Cocaína/farmacologia , Dopamina/metabolismo , Neurônios Aferentes/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Acupuntura/métodos , Animais , Humanos , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Locomoção/efeitos dos fármacos , Agulhas , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/patologia , Ratos , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/terapia
11.
Biol Pharm Bull ; 44(7): 947-957, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34193690

RESUMO

Transient receptor potential melastatin 8 (TRPM8) is a non-selective cation channel activated by mild cooling and chemical agents including menthol. Nonsteroidal anti-inflammatory drugs have antipyretic, analgesic effects, and they can cause stomach and small intestinal injury. The current study investigated the role of TRPM8 in the pathogenesis of indomethacin-induced small intestinal injury. In male TRPM8-deficient (TRPM8KO) and wild-type (WT) mice, intestinal injury was induced via the subcutaneous administration of indomethacin. In addition, the effect of WS-12, a specific TRPM8 agonist, was examined in TRPM8KO and WT mice with indomethacin-induced intestinal injury. TRPM8KO mice had a significantly higher intestinal ulcerogenic response to indomethacin than WT mice. The repeated administration of WS-12 significantly attenuated the severity of intestinal injury in WT mice. However, this response was abrogated in TRPM8KO mice. Furthermore, in TRPM8-enhanced green fluorescent protein (EGFP) transgenic mice, which express EGFP under the direction of TRPM8 promoter, the EGFP signals in the indomethacin-treated intestinal mucosa were upregulated. Further, the EGFP signals were commonly found in calcitonin gene-related peptide (CGRP)-positive sensory afferent neurons and partly colocalized with substance P (SP)-positive neurons in the small intestine. The intestinal CGRP-positive neurons were significantly upregulated after the administration of indomethacin in WT mice. Nevertheless, this response was abrogated in TRPM8KO mice. In contrast, indomethacin increased the expression of intestinal SP-positive neurons in not only WT mice but also TRPM8KO mice. Thus, TRPM8 has a protective effect against indomethacin-induced small intestinal injury. This response may be mediated by the upregulation of CGRP, rather than SP.


Assuntos
Anti-Inflamatórios não Esteroides , Indometacina , Canais de Cátion TRPM/genética , Anilidas/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/lesões , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Mentol/análogos & derivados , Mentol/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Substância P/metabolismo , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/metabolismo
12.
Pflugers Arch ; 473(4): 633-646, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33786667

RESUMO

We recently showed that a substance P (SP)-dependent sympatho-inhibitory mechanism via afferent renal nerves is impaired in mesangioproliferative nephritis. Therefore, we tested the hypothesis that SP released from renal afferents inhibits the action potential (AP) production in their dorsal root ganglion (DRG) neurons. Cultured DRG neurons (Th11-L2) were investigated in current clamp mode to assess AP generation during both TRPV1 stimulation by protons (pH 6) and current injections with and without exposure to SP (0.5 µmol) or CGRP (0.5 µmol). Neurons were classified as tonic (sustained AP generation) or phasic (≤ 4 APs) upon current injection; voltage clamp experiments were performed for the investigation of TRPV1-mediated inward currents due to proton stimulation. Superfusion of renal neurons with protons and SP increased the number of action potentials in tonic neurons (9.6 ± 5 APs/10 s vs. 16.9 ± 6.1 APs/10 s, P < 0.05, mean ± SD, n = 7), while current injections with SP decreased it (15.2 ± 6 APs/600 ms vs. 10.2 ± 8 APs/600 ms, P < 0.05, mean ± SD, n = 29). Addition of SP significantly reduced acid-induced TRPV1-mediated currents in renal tonic neurons (- 518 ± 743 pA due to pH 6 superfusion vs. - 82 ± 50 pA due to pH 6 with SP superfusion). In conclusion, SP increased action potential production via a TRPV1-dependent mechanism in acid-sensitive renal neurons. On the other hand, current injection in the presence of SP led to decreased action potential production. Thus, the peptide SP modulates signaling pathways in renal neurons in an unexpected manner leading to both stimulation and inhibition of renal neuronal activity in different (e.g., acidic) environmental contexts.


Assuntos
Potenciais de Ação , Rim/inervação , Neurônios Aferentes/fisiologia , Substância P/farmacologia , Animais , Células Cultivadas , Gânglios Espinais/citologia , Rim/citologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Ratos , Ratos Sprague-Dawley , Substância P/metabolismo , Canais de Cátion TRPV/metabolismo
13.
Am J Physiol Renal Physiol ; 320(5): F859-F865, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33749323

RESUMO

Bladder afferents play a pivotal role in bladder function such as urine storage and micturition as well as conscious sensations such as urgency and pain. Endocannabinoids are ligands of cannabinoid 1 and 2 (CB1 and CB2) receptors but can influence the activity of a variety of G protein-coupled receptors as well as ligand-gated and voltage-gated channels. It is still not known which classes of bladder afferents are influenced by CB1 and CB2 receptor agonists. This study aimed to determine the role of CB2 receptors in two major classes of afferents in the guinea pig bladder: mucosal and muscular-mucosal. The mechanosensitivity of these two classes was determined by an ex vivo extracellular electrophysiological recording technique. A stable analog of endocannabinoid anandamide, methanandamide (mAEA), potentiated the mechanosensitivity of mucosal bladder afferents in response to stroking. In the presence of a transient receptor potential vanilloid 1 antagonist (capsazepine), the effect of mAEA switched from excitatory to inhibitory. A selective CB2 receptor agonist, 4-quinolone-3-carboxyamide (4Q3C), significantly inhibited the mechanosensitivity of mucosal bladder afferents to stroking. In the presence of a CB2 receptor antagonist, the inhibitory effect of 4Q3C was lost. mAEA and 4Q3C did not affect responses to stretch and/or mucosal stroking of muscular-mucosal afferents. Our findings revealed that agonists of CB2 receptors selectively inhibited the mechanosensitivity of capsaicin-sensitive mucosal bladder afferents but not muscular-mucosal afferents. This may have important implications for understanding of the role of endocannabinoids in modulating bladder function and sensation in health and diseases.NEW & NOTEWORTHY This article describes, for the first time, to our knowledge, the direct inhibitory effect of cannabinoid 2 receptor agonists on guinea pig mucosal bladder afferents. The cannabinoid 2 receptor is involved in pain and inflammation, suggesting that this may be a viable target for treatment of bladder disorders such as cystitis.


Assuntos
Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Mecanotransdução Celular/efeitos dos fármacos , Mucosa/inervação , Músculo Liso/inervação , Neurônios Aferentes/efeitos dos fármacos , Receptor CB2 de Canabinoide/agonistas , Bexiga Urinária/inervação , Animais , Canfanos/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Endocanabinoides/metabolismo , Feminino , Cobaias , Ligantes , Neurônios Aferentes/metabolismo , Pirazóis/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
14.
Toxicol Lett ; 344: 34-45, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667609

RESUMO

ASP7962 is a small molecule inhibitor for the nerve growth factor (NGF) receptor, tropomyosin-related kinase A (TrkA). NGF contributes to the survival of sensory and sympathetic neurons through TrkA receptor activation. Gross, microscopic, and quantitative effects to the nervous system were evaluated following oral ASP7962 administration to Sprague Dawley rats for 4 weeks and 13 weeks and after a recovery period. Histopathological findings included reversible neuronal atrophy but no neuronal death in the sympathetic ganglia (cervicothoracic ganglion, cranial mesenteric ganglion or superior [cranial] cervical ganglion). Stereological analysis showed reversible decreased ganglion volume and/or decreased neuron size in the superior (cranial) cervical ganglion in both the 4-week and the 13-week repeated dose studies. There were no test article related changes in the brain, dorsal root ganglia with spinal nerve roots or trigeminal ganglia and no functional deficits. ASP7962 did not cause any detectable dysfunction of the sympathetic and sensory nervous system in either study.


Assuntos
Neurônios Aferentes/efeitos dos fármacos , Receptor trkA/antagonistas & inibidores , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Masculino , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Ratos , Ratos Sprague-Dawley , Gânglio Estrelado/citologia , Gânglio Estrelado/efeitos dos fármacos , Gânglio Cervical Superior/citologia , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Trigeminal/efeitos dos fármacos
15.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008533

RESUMO

The cation channel TRPM3 is activated by heat and the neurosteroid pregnenolone sulfate. TRPM3 is expressed on sensory neurons innervating the skin, where together with TRPV1 and TRPA1, it functions as one of three redundant sensors of acute heat. Moreover, functional upregulation of TRPM3 during inflammation contributes to heat hyperalgesia. The role of TRPM3 in sensory neurons innervating internal organs such as the bladder is currently unclear. Here, using retrograde labeling and single-molecule fluorescent RNA in situ hybridization, we demonstrate expression of mRNA encoding TRPM3 in a large subset of dorsal root ganglion (DRG) neurons innervating the mouse bladder, and confirm TRPM3 channel functionality in these neurons using Fura-2-based calcium imaging. After induction of cystitis by injection of cyclophosphamide, we observed a robust increase of the functional responses to agonists of TRPM3, TRPV1, and TRPA1 in bladder-innervating DRG neurons. Cystometry and voided spot analysis in control and cyclophosphamide-treated animals did not reveal differences between wild type and TRPM3-deficient mice, indicating that TRPM3 is not critical for normal voiding. We conclude that TRPM3 is functionally expressed in a large proportion of sensory bladder afferent, but its role in bladder sensation remains to be established.


Assuntos
Inflamação/metabolismo , Neurônios Aferentes/metabolismo , Canais de Cátion TRPM/metabolismo , Regulação para Cima/fisiologia , Bexiga Urinária/metabolismo , Animais , Ciclofosfamida/farmacologia , Cistite/induzido quimicamente , Cistite/metabolismo , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/efeitos dos fármacos , Pregnenolona/farmacologia , RNA Mensageiro/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação para Cima/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos
16.
Neuroreport ; 32(2): 77-81, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33323835

RESUMO

Isoflurane is an inhaled anesthetic, though its actions at the cellular level remain controversial. By using acute spinal cord slices from adult rats and the whole-cell recording technique, we found that aqueous isoflurane at the minimum alveolar concentration decreased postsynaptic neural excitability and enhanced membrane conductance, while suppressing glutamate release from presynaptic afferent onto substantia gelatinosa (lamina II) neurons in the dorsal horn. The data demonstrate that isoflurane modulates synaptic transmission from peripheral to the spinal cord via both pre- and postsynaptic effects and these actions may underlie its spinal anesthesia.


Assuntos
Anestésicos Inalatórios/farmacologia , Isoflurano/farmacologia , Substância Gelatinosa/efeitos dos fármacos , Animais , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Técnicas de Patch-Clamp , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Corno Dorsal da Medula Espinal/citologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Substância Gelatinosa/metabolismo , Transmissão Sináptica/efeitos dos fármacos
17.
J Neurophysiol ; 125(2): 568-585, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326305

RESUMO

Somatosensory input strength can be modulated by primary afferent depolarization (PAD) generated predominantly via presynaptic GABAA receptors on afferent terminals. We investigated whether ionotropic nicotinic acetylcholine receptors (nAChRs) also provide modulatory actions, focusing on myelinated afferent excitability in in vitro murine spinal cord nerve-attached models. Primary afferent stimulation-evoked synaptic transmission was recorded in the deep dorsal horn as extracellular field potentials (EFPs), whereas concurrently recorded dorsal root potentials (DRPs) were used as an indirect measure of PAD. Changes in afferent membrane excitability were simultaneously measured as direct current (DC)-shifts in membrane polarization recorded in dorsal roots or peripheral nerves. The broad nAChR antagonist d-tubocurarine (d-TC) selectively and strongly depressed Aδ-evoked synaptic EFPs (36% of control) coincident with similarly depressed A-fiber DRP (43% of control), whereas afferent electrical excitability remained unchanged. In comparison, acetylcholine (ACh) and the nAChR agonists, epibatidine and nicotine, reduced afferent excitability by generating coincident depolarizing DC-shifts in peripheral axons and intraspinally. Progressive depolarization corresponded temporally with the emergence of spontaneous axonal spiking and reductions in the DRP and all afferent-evoked synaptic actions (31%-37% of control). Loss of evoked response was long-lasting, independent of DC repolarization, and likely due to mechanisms initiated by spontaneous C-fiber activity. DC-shifts were blocked with d-TC but not GABAA receptor blockers and retained after tetrodotoxin block of voltage-gated Na+ channels. Notably, actions tested were comparable between three mouse strains, in rat, and when performed in different labs. Thus, nAChRs can regulate afferent excitability via two distinct mechanisms: by central Aδ-afferent actions, and by transient extrasynaptic axonal activation of high-threshold primary afferents.NEW & NOTEWORTHY Primary afferents express many nicotinic ACh receptor (nAChR) subtypes but whether activation is linked to presynaptic inhibition, facilitation, or more complex and selective activity modulation is unknown. Recordings of afferent-evoked responses in the lumbar spinal cord identified two nAChR-mediated modulatory actions: 1) selective control of Aδ afferent transmission and 2) robust changes in axonal excitability initiated via extrasynaptic shifts in DC polarization. This work broadens the diversity of presynaptic modulation of primary afferents by nAChRs.


Assuntos
Gânglios Espinais/metabolismo , Neurônios Aferentes/metabolismo , Receptores Nicotínicos/metabolismo , Potenciais Sinápticos , Animais , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/classificação
18.
Am J Physiol Heart Circ Physiol ; 320(1): H117-H132, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216622

RESUMO

Elevated renal afferent nerve (ARNA) activity or dysfunctional reno-renal reflexes via altered ARNA sensitivity contribute to hypertension and chronic kidney disease. These nerves contain mechano- and chemosensitive fibers that respond to ischemia, changes in intrarenal pressures, and chemokines. Most studies have utilized various anesthetized preparations and exclusively male animals to characterize ARNA responses. Therefore, this study assessed the impact of anesthesia, sex, and circadian period on ARNA responses and sensitivity. Multifiber ARNA recordings were performed in male and female Sprague-Dawley rats (250-400 g) and compared across decerebrate versus Inactin, isoflurane, and urethane anesthesia groups. Intrarenal artery infusion of capsaicin (0.1-50.0 µM, 0.05 mL) produced concentration-dependent increases in ARNA; however, the ARNA sensitivity was significantly greater in decerebrate versus Inactin, isoflurane, and urethane groups. Increases in renal pelvic pressure (0-30 mmHg, 30 s) produced pressure-dependent increases in ARNA; however, ARNA sensitivity was again greater in decerebrate and Inactin groups versus isoflurane and urethane. Acute renal artery occlusion (30 s) increased ARNA, but responses did not differ across groups. Analysis of ARNA responses to increased pelvic pressure between male and female rats revealed significant sex differences only in isoflurane and urethane groups. ARNA responses to intrarenal capsaicin infusion were significantly blunted at nighttime versus daytime; however, ARNA responses to increased pelvic pressure or renal artery occlusion were not different between daytime and nighttime. These results demonstrate that ARNA sensitivity is greatest in decerebrate and Inactin-anesthetized groups but was not consistently influenced by sex.NEW & NOTEWORTHY We determined the impact of anesthesia, sex, and circadian cycle on renal afferent nerve (ARNA) sensitivity to chemical and mechanical stimuli. ARNA sensitivity to renal capsaicin infusion was greatest in decerebrate > Inactin > urethane or isoflurane groups. Elevated renal pelvic pressure significantly increased ARNA; decerebrate and Inactin groups exhibited the greatest ARNA sensitivity. Sex differences in renal afferent responses were not consistently observed. Circadian cycle altered chemosensory but not mechanosensory responses.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anestésicos Inalatórios/farmacologia , Anestésicos Intravenosos/farmacologia , Capsaicina/farmacologia , Ritmo Circadiano , Rim/irrigação sanguínea , Neurônios Aferentes/efeitos dos fármacos , Fármacos do Sistema Sensorial/farmacologia , Animais , Estado de Descerebração , Relação Dose-Resposta a Droga , Feminino , Hemodinâmica/efeitos dos fármacos , Isoflurano/farmacologia , Masculino , Pressão , Ratos Sprague-Dawley , Fatores Sexuais , Tiopental/análogos & derivados , Tiopental/farmacologia , Fatores de Tempo , Uretana/farmacologia
19.
Am J Physiol Renal Physiol ; 319(5): F822-F832, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017188

RESUMO

Afferent renal nerves exhibit a dual function controlling central sympathetic outflow via afferent electrical activity and influencing intrarenal immunological processes by releasing peptides such as calcitonin gene-related peptide (CGRP). We tested the hypothesis that increased afferent and efferent renal nerve activity occur with augmented release of CGRP in anti-Thy1.1 nephritis, in which enhanced CGRP release exacerbates inflammation. Nephritis was induced in Sprague-Dawley rats by intravenous injection of OX-7 antibody (1.75 mg/kg), and animals were investigated neurophysiologically, electrophysiologically, and pathomorphologically 6 days later. Nephritic rats exhibited proteinuria (169.3 ± 10.2 mg/24 h) with increased efferent renal nerve activity (14.7 ± 0.9 bursts/s vs. control 11.5 ± 0.9 bursts/s, n = 11, P < 0.05). However, afferent renal nerve activity (in spikes/s) decreased in nephritis (8.0 ± 1.8 Hz vs. control 27.4 ± 4.1 Hz, n = 11, P < 0.05). In patch-clamp recordings, neurons with renal afferents from nephritic rats showed a lower frequency of high activity following electrical stimulation (43.4% vs. 66.4% in controls, P < 0.05). In vitro assays showed that renal tissue from nephritic rats exhibited increased CGRP release via spontaneous (14 ± 3 pg/mL vs. 6.8 ± 2.8 pg/ml in controls, n = 7, P < 0.05) and stimulated mechanisms. In nephritic animals, marked infiltration of macrophages in the interstitium (26 ± 4 cells/mm2) and glomeruli (3.7 ± 0.6 cells/glomerular cross-section) occurred. Pretreatment with the CGRP receptor antagonist CGRP8-37 reduced proteinuria, infiltration, and proliferation. In nephritic rats, it can be speculated that afferent renal nerves lose their ability to properly control efferent sympathetic nerve activity while influencing renal inflammation through increased CGRP release.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Rim/efeitos dos fármacos , Nefrite/tratamento farmacológico , Neurônios Aferentes/efeitos dos fármacos , Vias Aferentes/efeitos dos fármacos , Animais , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Substância P/metabolismo
20.
J Neurophysiol ; 124(5): 1388-1398, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32965166

RESUMO

Vagal afferent neurons abundantly express excitatory transient receptor potential (TRP) channels, which strongly influence afferent signaling. Cannabinoids have been identified as direct agonists of TRP channels, including TRPA1 and TRPV1, suggesting that exogenous cannabinoids may influence vagal signaling via TRP channel activation. The diverse therapeutic effects of electrical vagus nerve stimulation also result from administration of the nonpsychotropic cannabinoid, cannabidiol (CBD); however, the direct effects of CBD on vagal afferent signaling remain unknown. We investigated actions of CBD on vagal afferent neurons, using calcium imaging and electrophysiology. CBD produced strong excitatory effects in neurons expressing TRPA1. CBD responses were prevented by removal of bath calcium, ruthenium red, and the TRPA1 antagonist A967079, but not the TRPV1 antagonist SB366791, suggesting an essential role for TRPA1. These pharmacological experiments were confirmed using genetic knockouts where TRPA1 KO mice lacked CBD responses, whereas TRPV1 knockout (KO) mice exhibited CBD-induced activation. We also characterized CBD-provoked inward currents at resting potentials in vagal afferents expressing TRPA1 that were absent in TRPA1 KO mice, but persisted in TRPV1 KO mice. CBD also inhibited voltage-activated sodium conductances in A-fiber, but not in C-fiber afferents. To simulate adaptation, resulting from chronic cannabis use, we administered cannabis extract vapor daily for 3 wk. Cannabis exposure reduced the magnitude of CBD responses, likely due to a loss of TRPA1 signaling. Together, these findings detail a novel excitatory action of CBD at vagal afferent neurons, which requires TRPA1 and may contribute to the vagal mimetic effects of CBD and adaptation following chronic cannabis use.NEW & NOTEWORTHY CBD usage has increased with its legalization. The clinical efficacy of CBD has been demonstrated for conditions including some forms of epilepsy, depression, and anxiety that are also treatable by vagus nerve stimulation. We found CBD exhibited direct excitatory effects on vagal afferent neurons that required TRPA1, were augmented by TRPV1, and attenuated following chronic cannabis vapor exposure. These effects may contribute to vagal mimetic effects of CBD and adaptation after chronic cannabis use.


Assuntos
Canabidiol/administração & dosagem , Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/fisiologia , Nervo Vago/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos Knockout , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Imagem Óptica , Ratos Sprague-Dawley , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética , Nervo Vago/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...